• 来源:2017美团技术年货-后端架构

一. 背景

  • 背景:在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。


  • 业务系统对ID号的要求

  • 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。

  • 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。

  • 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。

  • 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。


  • 上述123对应三类不同的场景,3和4需求还是互斥的,无法使用同一个方案满足。同时除了对ID号码自身的要求,业务还对ID号生成系统的可用性要求极高,想象一下,如果ID生成系统瘫痪,整个美团点评支付、优惠券发券、骑手派单等关键动作都无法执行,这就会带来一场灾难。


  • 一个ID生成系统应该做到如下几点

  • 平均延迟和TP999延迟(指在一组请求中,至少有99.9%的请求响应时间小于或等于该值)都要尽可能低;

  • 可用性5个9(服务的可用性达到99.999%);

  • 高QPS(指系统在单位时间内能够处理的查询请求数量)。

二. 常见方法介绍

1. UUID

  • 介绍:UUID(Universally Unique Identifier) 的标准型式包含 32 个 16 进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,目前为止一共有5种方式生成。

  • 优点:性能非常高:本地生成,没有网络消耗。

  • 缺点

  • 不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。

  • 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露。

  • ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用:MySQL官方有明确的建议主键要尽量越短越好,36个字符长度的UUID不符合要求;对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。

2. 类snowflake(雪花算法)方案

①定义

②优缺点

  • 优点

  • 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。

  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。

  • 可以根据自身业务特性分配bit位,非常灵活。

  • 缺点

  • 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

③实例

  • MongoDB官方文档ObjectID可以算作是和snowflake类似方法,通过“时间+机器码+pid+inc”共12个字节,通过4+3+2+3的方式最终标识成一个24长度的十六进制字符。

3. 数据库生成

①MySQL示例

  • image-pnil.png

  • 优点

  • 非常简单,利用现有数据库系统的功能实现,成本小,有DBA专业维护。

  • ID 号单调自增,可以实现一些对ID有特殊要求的业务。

  • 缺点

  • 强依赖DB,当DB异常时整个系统不可用,属于致命问题。配置主从复制可以尽可能的增加可用性,但是数据一致性在特殊情况下难以保证。主从切换时的不一致可能会导致重复发号。

  • ID 发号性能瓶颈限制在单台MySQL的读写性能。

②MySQL性能优化

三. Leaf方案

  • 综合对比上述几种方案,每种方案都不完全符合我们的要求。所以Leaf分别在上述第二种和第三种方案上做了相应的优化,实现了Leaf-segment和Leaf-snowflake方案。

1. Leaf-segment数据库方案

①介绍

  • 第一种Leaf-segment方案,在使用数据库的方案上,做了如下改变:

  • 原方案每次获取ID都得读写一次数据库,造成数据库压力大。改为利用proxy server 批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力。

  • 各个业务不同的发号需求用biz_tag字段来区分,每个biz_tag的ID获取相互隔离,互不影响。如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。

  • 优点

  • Leaf 服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。

  • ID 号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。

  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。

  • 可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来。

  • 缺点

  • ID 号码不够随机,能够泄露发号数量的信息,不太安全。

  • TP999数据波动大,当号段使用完之后还是会停在更新数据库的I/O上,tg999数据会出现偶尔的尖刺。

  • DB宕机会造成整个系统不可用。

②双buffer优化

  • 针对第二个缺点可以采用双buffer优化

  • Leaf取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。

  • 为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的TP999指标。详细实现如下图所示:

  • 采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复。

  • 每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20 分钟不受影响。

  • 每次请求来临时都会判断下个号段的状态,从而更新此号段,所以偶尔的网络抖动不会影响下个号段的更新。

③Leaf高可用容灾

  • 同时Leaf服务分IDC部署,内部的服务化框架是“MTthrift RPC”。服务调用的时候,根据负载均衡算法会优先调用同机房的Leaf服务。在该IDC内Leaf服务不可用的时候才会选择其他机房的Leaf服务。同时服务治理平台OCTO还提供了针对服务的过载保护、一键截流、动态流量分配等对服务的保护措施。

2. Leaf-snowflake方案

①介绍

②弱依赖ZooKeeper

  • 除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。当ZooKeeper出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。一定程度上提高了SLA。

③解决时钟问题

  • 因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,需要解决时钟回退的问题。

3. Leaf现状

  • Leaf在美团点评公司内部服务包含金融、支付交易、餐饮、外卖、酒店旅游、猫眼电影等众多业务线。目前Leaf的性能在4C8G的机器上QPS能压测到近5w/s,TP999 1ms,已经能够满足大部分的业务的需求。每天提供亿数量级的调用量,作为公司内部公共的基础技术设施,必须保证高SLA和高性能的服务。